Music genre classification using LBP textural features
نویسندگان
چکیده
منابع مشابه
Music genre classification using LBP textural features
In this paper we present an approach to music genre classification which converts an audio signal into spectrograms and extracts texture features from these time-frequency images which are then used for modeling music genres in a classification system. The texture features are based on Local Binary Pattern, a structural texture operator that has been successful in recent image classification re...
متن کاملMIDI Music Genre Classification by Invariant Features
MIDI music genre classification methods are largely based on generic text classification techniques. We attempt to leverage music domain knowledge in order to improve classification results. We combine techniques of selection and extraction of musically invariant features with classification using compression distance similarity metric, which is an approximation of the theoretical, yet computat...
متن کاملMusic Genre Classification Using MIDI and Audio Features
We report our findings on using MIDI files and audio features from MIDI, separately and combined together, for MIDI music genre classification. We use McKay and Fujinaga’s 3-root and 9-leaf genre data set. In order to compute distances between MIDI pieces, we use normalized compression distance (NCD). NCD uses the compressed length of a string as an approximation to its Kolmogorov complexity an...
متن کاملTowards Efficient Music Genre Classification Using Fastmap
Automatic genre classification aims to correctly categorize an unknown recording with a music genre. Recent studies use the Kullback-Leibler (KL) divergence to estimate music similarity then perform classification using k-nearest neighbours (k-NN). However, this approach is not practical for large databases. We propose an efficient genre classifier that addresses the scalability problem. It use...
متن کاملGenre Classification Using Graph Representations of Music
A song can be represented by a graph, where nodes and edges represent individual pitchduration tuples and co-occurrence of multiple notes respectively. A set of features can be derived from said graph for use in a variety of classification algorithms. In an attempt to derive meaning and utility from these graph features, we tackled the issue of genre classification–a highly subjective form of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2012
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2012.04.023